Impact of wave whitecapping on land falling tropical cyclones

Abstract

Predicting tropical cyclone structure and evolution remains challenging. Particularly, the surface wave interactions with the continental shelf and their impact on tropical cyclones have received very little attention. Through a series of state-of-the-art high-resolution, fully-coupled ocean-wave and atmosphere-ocean-wave experiments, we show here, for the first time, that in presence of continental shelf waves can cause substantial cooling of the sea surface. Through whitecapping there is a transfer of momentum from the surface which drives deeper vertical mixing. It is the waves and not just the wind which become the major driver of stratified coastal ocean ahead-of-cyclone cooling. In the fully-coupled atmosphere-ocean-wave model a negative feedback is found. The maximum wind speed is weaker and the damaging footprint area of hurricane-force winds is reduced by up to 50% due to the strong wave induced ocean cooling ahead. Including wave-ocean coupling is important to improve land falling tropical cyclone intensity predictions for the highly populated and vulnerable coasts.

Publication
Scientific Reports